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Abstract. The average end-to-end distance RN of a flexible polymer chain of N segments 
in a good solvent varies as N u ,  where, according to Flory, the size exponent Y = 3/(2 + d )  
in d dimensions (1 C d C 4). The original derivation of this formula for the exponent Y has 
been shown by des Cloizeaux to be without foundation. We demonstrate that the Flory 
formula is valid in a model for which only a finite (but large) number of spherical 
harmonics are retained in the harmonic (partial wave) expansion of the propagator. 

1. Introduction 

The average end-to-end distance RN of a flexible polymer chain in a good solvent 
varies with the number of links N as RN - bN”, N >> 1, where b is a link length. All 
aspects of polymer behaviour in the dilute and semi-dilute concentration regimes 
involve v, Hence it is not surprising that there have been many attempts at determin- 
ing the value of this fundamental exponent. Reviews of these varied attempts are 
given by Yamakawa (1971), des Cloizeaux (1970, 1976) and McKenzie (1976). One 
of the oldest approaches is that of Flory (1953), which, when generalised to arbitrary 
dimensionality d (Fisher 1969), gives v = 3/(2+d), (1 S d S 4). For d = 1, it predicts 
that v = 1 which is clearly the exact answer. For d = 2, the formula yields Y = 0.75. 
Exact enumeration and Monte Carlo estimates of v in two dimensions lie in the range 
0-74-0.75 (McKenzie 1976). In three dimensions, the Flory value for v is 0.60, while 
numerical estimates give values in the range 0.59-0.61 (McKenzie 1976). Experi- 
mental determination of v is, of course, possible in three dimensions; for example, 
Decker (1968) obtained v = 0.59(5) in a light scattering experiment. Probably, the 
most precise estimate of v in three dimensions is the renormalisation group cal- 
culation of Le Guillou and Zinn-Justin (1977) who quote v = 0.588 f 0.001. 

Despite the numerical success of the Flory formula for Y it is certainly not exact 
(except for d = 1). This was first shown by de Gennes (1972). Universal properties of 
self-interacting walks are described by .the Landau-Ginzburg-Wilson isotropic n - 
vector model in the limit n +O (de Gennes 1972, Emery 1975). In the renor- 
malisation group e(=4 -d) expansion, 2v = 2v(n = 0) = 1 + ~ / 8  +O(E’), whereas the 
Flory formula gives 2 v  = 1 + ~ / 6  + O(E’). 

As the Flory formula for v is so accurate, one might hope that it would be possible 
to provide a derivation of it which would at the same time provide an approach to 
polymers in solution which is conceptually simpler than one based on the renor- 
malisation group. Unfortunately, the original derivation of the Flory formula is quite 
without foundation (des Cloizeaux 1976). Another approach which is supposed to 
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give the Flory result is the self-consistent field (SCF) method devised by Edwards 
(1965) (for a review see Freed 1972). We shall comment on this method in 0 4. 

Before describing our basic approximation some formalism must be introduced. 
As usual we shall be studying the Green function &(r, r’, L) of a continuous flexible 
string of length L which has one end at r and its other end at r’. Its Laplace transform 
G(r, r’, E) is the generating function for these strings. Because of translational 
invariance, G(r, r’, E) = G(lr - r’l, E). In the absence of excluded volume forces, 
G(r, r’, E) = g(r, r’ ,  E) where the bare propagator g satisfies the differential equation 

(E  -V2)g(r ,  r‘, E )  = S(r - rr) .  (1) 

(All lengths, etc, are expressed in terms of the segment length b to suppress b from the 
equations.) The solution of equation (1) gives the well known Gaussian behaviour of a 
random chain. The excluded volume interaction energy of two points at x and y on 
the string will be taken to be k g T u ( x , y )  where u ( x , y ) =  U S @ - y ) .  The graphical 
perturbation expansion of G in powers of U is given in figure 1.  

,----. 
- = - +  \ 
r r’ 

Figure 1. Graphical expansion of G(r, r’, E ) .  The broken lines carry a factor -uS(x - y ) .  
The light full lines are bare propagators g. The bold line represents the full Green function 
G(r,  r’, E) .  

Both the bare propagator g(r,  r r ,  E) and the Green function G(r, r’, E) can be 
expanded in three dimensions in the spherical harmonics Ylm : 

as A + m .  fl and Szr denote the angular spherical polar coordinates of r and r’ 
respectively. 

Our basic approximation is not to let A + 03 but to keep it large but finite. Such an 
approximation destroys translational invariance so that now G(r, r’, E) # 
G(lr - r’l, E). In many ways it is as though there were a central potential at the origin. 
The loss of translational invariance makes the approximation unsuitable for construc- 
ting a simple intuitive theory of polymers in solution. On the other hand it defines a 
model for which the Flory result emerges relatively cleanly. 

Because of the loss of translational invariance G(r, r, E) now becomes a function 
of r. Scaling suggests that its r dependence at E = 0 should be G(r, r, 0)- l / r d - ” ” .  
(In the translationally invariant system G(r, r, E ) -  (E -EcJd”-l (McKenzie 1976), 
where E, is the critical value of E. One expects, therefore, that in the non-trans- 
lationally invariant system G(r, r, E ) -  (E-E,ldY-lf(rIE-E,I”), so that as IE-EJ + 0, 
G(r, r, E,)- 1/rd-”’. Explicit calculation in $0 2 and 3 confirm this scaling prediction 
and also show that E,=O.) We shall find the Flory result for Y in the finite-A 



On the Flory formula for polymer size exponent U 1355 

approximation from the r dependence of G(r, r, 0). A similar procedure for finding v 
is used in the SCF theory (Freed 1972). 

The expansions in equations ( 2 )  and (3) in terms of spherical harmonics are 
particular to three dimensions. In general dimensionality similar expansions exist, but 
in terms of the Gegenbauer polynomials. They will not be written down as their 
explicit form is not needed. In all cases our approximation consists of cutting off the 
summation over the partial waves at some finite A. 

In § 2 the Green function G(r, r’, 0) is calculated in the self-consistent Fock 
approximation with finite A. It is shown explicitly that G(r, r, 0) falls off as r-2(d-1)’3, 
so that on setting d - l / v  = 2(d - 1)/3, one obtains the Flory result for v. We prove in 
0 3 that the exponent dependence of G(r, r, 0) remains as determined in the self- 
consistent Fock approximation to all orders in perturbation theory. In § 4 the 
mechanism by which the Flory result fails as the limit A + 00 is taken is exhibited. In 
addition we discuss the relation of our approximation to the SCF of Edwards. 

2. The self-consistent Fock approximation 

The Green function in this approximation, %(r, rl, E ) ,  is given by the solution of the 
non-linear integral equation (see figure 2 )  

W, r’,  E)= g(r, rl,  €1- I dx dy g(r,  x, E)%(x, Y, E)%(y, rl, E ) v ( x ,  y). (4) 

----. 
I .\ 

I - -  - - - +  I 

r r r ’  r ’  

Figure 2. Graphical equation for the self-consistent Fock propagator %(r, r’, E )  (double 
line). 

r ’  r x  Y 

It is to be understood that g in this equation is the expression which arises from 
keeping A finite in equation (2). Only the special case of E = 0 will be studied. Let us 
make the ansafz that 

U ( X ,  Y)%(x, y, O)=AS(x-y)/xd-””, (5  

where A and v are to be determined self-consistently. Then % is the solution of the 
differential equation 

(-V2 +A/rd-””)%(r, r’,  0) = S(r - rl). (6 )  

Each individual harmonic %(r, r’) of %(r, r‘ ,  0) satisfies the equation 

d2 d - 1  d l ( l + d - 2 )  A S(r - r‘) + ( dr2 r d r  r2 

Provided d - 1 / v  < 2, at sufficiently large r 

(7)  

A 1(1+d-2 )  
r2 ’ for all 1 s A, yd-17; >> 
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and in this region of space each 31 satisfies the same equation, independent of I ,  

d2 d - l d  A S ( r  - r' )  ( - Z - r  & + -) r d - l / v  g l ( r ,  r ' )  = 7. (9) 

For values of r, r' which satisfy the inequality in equation (8) one can write 

(10) I (d-1)/2 %(r, r ' )  = F ( r ,  r ' ) / ( rr  ) 

where F ( r ,  r ' )  satisfies the equation 

, 

The solution of equation (11) is (Abramowitz and Stegun 1965, p 362) 

F ( r ,  r ' )  = (rr')1~211~p(2firP~2/p)Kl~p(2fir'p~2/p), r c r' (12) 

where p = 2 - d + l / v .  For 2 f i r p I 2  >> 1 and 2 J A r ' P / 2  >> 1 (which is automatically true 
if equation (8) is satisfied), one may approximate the modified Bessel functions I l l p  
and K1lp by their large-argument expansions to obtain 

F ( r ,  r ' )  = [ ( r r ' ) 1 / 2 p / 4  J A ( r r ' ) p / 4 ]  exp(-2 JAlrp/ '  - ~ " / ~ / / p ) .  

g l ( r ,  r ' )  = [ p / 4 J Z ( r r t > ' 2 d - 4 + ~ ) / 4  1 e ~ p ( - 2 f i l r ~ / ~ -  r ' p / 2 / / p )  

(13) 

(14) 

Hence 

for 1 % A .  

From (5) and (14), 
The values of v and A for which the ansatz is self-consistent can now be found. 

where Df is the degeneracy of the lth polynomial, 

(I + d - 3)!(21+ d - 2) 
l!(d - 2 ) !  

of = 7 

(Balian and Toulouse 1974). (The appropriate values for 1, 2 and 3 dimensions are 

for 13 1; 0: = 21+ 1.) The factor s d ,  the surface area of a unit sphere in d dimen- 
sions, arises from the normalisation of the polynomials. In three dimensions for 
example 

easily recovered from equation (16); 0: = 1 = D:,  0: = 0 for 1 z 2; DG = 1, Dl  2 = 2 

Equating the exponents of x on both sides of equation (15) gives 

d - l / v  = (2d -4 + p ) / 2  = d  - 2 + (2 - d + l / v ) / 2  

and hence that Y = 3/(2 + d). Equating the constants on both sides of (15) yields 

where E = 4 - d. Self-consistency can thus be achieved. Note that the calculation is 
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only valid for d < 4, when the central potential A/rd-"" dominates the centrifugal 
term. 

The calculation is analytically intractable for E # 0. However, it is still possible to 
see that E, = 0 within this approximation for finite A, since if it had not been zero 
%(r, r, 0) would have been found to be a finite constant as r + CO. But %(r, r, 0) - 
r as r+co so E,=O. -2(d-1)/3 

3. Corrections to the self-consistent Fock theory 

For A finite and r and r' satisfying the inequality of equation (8), the self-consistent 
Fock propagator %(r, r', 0) can be written %(r, r')f(R, a') where (substituting for p in 
equation (14)) 

%(r, r') = [ ~ / 6 f i ( r r ' ) ' ~ - ' ) / ~ ]  e ~ p ( - 3 f i ) r ' / ~  - r ' " /3 ) /~ )  (18) 

and 

in three dimensions. We shall now determine the corrections to %(r, r, 0) which arise 
from graphs other than those implicitly summed in figure 2. A typical graph is shown 
in figure 3. As we are computing corrections to the Fock propagator the propagators 
in the graphs are Fock propagators. On inserting the 6 function form of the excluded 
volume interaction the broken lines collapse to a four-point vertex to which there is 
associated a factor of (-U). The sum over all such diagrams (excluding Fock-type 
insertions) gives the full Green function G(r, r', 0). 

< - - - - - r e  - - - - - 
r x  Y X Y r  

,. 
I \ .\\ , 

Figure 3. A higher-order correction to the Fock propagator. 

and g(R) is an arbitrary function. Ci  are numerical coefficients of order one. Essen- 
tially, f(n, nl) is a sort of delta function for large A. On using equations (20) and (21) 
the diagram of figure 3 becomes, after carrying out the integrations over n, and a,,, of 
the order of 

u2f'(O)f(n,, a,,) /omdxxd-' yd-'%(r, x ) g 3 ( x ,  y)%(y, r'). 

The variable changes, 
X4 - - y ~ / 3  = - 7 ,  - x, Y ,  r ~ / 3  = - r'*/3 = r, 
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enable this expression to be rewritten as of order 

where 

@(x',y') = ( 4 6 f i )  exp(-3f i l2  - ~ I / E ) .  
Equations (22) and (23) show that the graph and propagator have been reduced to a 
form very close to what would be encountered in a one-dimensional problem. As 
both r and r' are large the error involved in extending the lower limits on the x' and f 
integrations to minus infinity in equation (22) is exponentially small. If this is done the 
integrals in (23) are independent of r (if r' = r ) ,  so the graph gives a contribution to 

times a finite constant. In other words the graph of G(r, r, 0 )  just equal to r 
figure 3 does not alter the r dependence of G(r, r, 0) found in the self-consistent Fock 
approximation of § 2. 

This is just an example of a result which is true order by order in the perturbation 
expansion in U. After the angular integrations have been performed each graph 
becomes one-dimensional with a pre-factor f(n,, SZr,)/(rr')(d-1)/3. A typical internal 
integration over a vertex labelled by z then proceeds as follows. There is an overall 
factor l/24'd-1)/3 coming from the four lines emanating from the vertex. The z 
integration is of the form 

- 2 ( d - 1 ) / 3  

W 1 dz Z d - 1 / z 4 ( d - 1 ) / 3  x exponentials. 

The substitution z " ~  = 2 reduces the integration to 

( 3 / ~ )  Im d i  X exponentials. 
0 

The error in extending the lower limit on the i integration to minus infinity is always 
small for large r and r'. The graph is then basically that of the one-dimensional system 
with propagator as in equation (23). As the integrals are independent of r when r = r' 
one can conclude that any graph will always give contributions to G(r, r, 0) of the form 

. Hence the higher-order corrections to the Fock propagator should not 
change the value of v from the Flory result. 

r - 2 ( d - 1 ) / 3  

4. Discussion 

It is obvious that the derivation of the Flory result in § 2 depended crucially on having 
A finite. Once this approximation had been made, the rest followed fairly directly. 
The manner in which the derivation breaks down as A + CO is worth recording. The 
proof of self-consistency is confined to distances which satisfy the inequality in 
equation (8), that is, for 

r >> ( I I ~ / A ) ~ / ' ' .  (24) 

r>hu-"'.  (25) 

Using the large-l approximation that 0: - I d - * ,  equation (17) shows that A3/' - 
uAd-'.  Thus the region of validity of the calculation is for distances r such that 
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For finite A a region can always be found in which the Flory result holds. As A + CO no 
such region exists. In the region r<Au-''' the Green function will not be as in 
equation (18), but close to that of the true Green function calculated for A = 00. The 
situation is probably like that which occurs in certain models for phase transitions in 
which one embeds a cluster at the centre of a Bethe lattice. The exponents and 
transition temperature remains always those of the mean-field approximation, which 
fails only in the central cluster. 

While the calculation presented here was couched in a language natural for 
polymers, there is nothing in it which precludes extension to a Landau-Ginzburg- 
Wilson isotropic n -vector model with n values other than zero (the value appropriate 
to polymers). The Flory result for the exponent v would be obtained for all n. 

In one dimension only DA and 0: are non-zero, so only a finite number of 
harmonics occurs. This may explain why the finite A value of v, namely the Flory 
result, is exact in one dimension. 

We shall conclude with a discussion of the relationship between the finite-A 
approximation and the SCF theory of Edwards (1965) and Freed (1972). For both 
theories translational symmetry is broken. In our approximation this happens through 
the truncation of the partial wave expansion. In the SCF theory the chain ends are 
specified, which breaks the translational symmetry as the SCF field equations depend 
explicitly on these end points. The resulting SCF equations (Gillis and Freed 1975, 
Kosmas and Freed 1978) are intractable non-linear integral equations which cannot 
be sol.ved analytically. A further approximation is resorted to in which only s-wave 
components are retained. It may therefore be the case that our finite-A approxima- 
tion is in some senses a generalisation of the traditional SCF theories at the level at 
which they become analytically tractable. Our finite-A approximation has, however, 
the advantage of being explicitly soluble and its status as an approximation is manifest. 
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